The Nex Flow Difference: Why we treat our materials differently?

The Nex Flow Difference: Why we treat our materials differently?

Nex Flow Air Products Corp. sets itself apart from its competitors by doing a few things differently with the materials that we use in manufacturing our products. While some producers are actually quite similar in product as to how they deal with material, we stand out in four specific areas as to what we do with the materials of manufacture. Differences for Nex Flow are as follows:

  1. Anodized aluminum parts
  2. Powder coated parts
  3. No Plastic in our vortex tubes
  4. We do not mix aluminum and stainless steel in our vortex tube packages

Anodized Aluminum parts

We make it a point to anodize our aluminum air knives, amplifier, air jets, air wipes and air operated conveyors.

It is actually much easier (and certainly less costly) to produce these items without anodizing due to the importance of efficient aerodynamic design. When the products are anodized the surface changes, even if the change is very small, it makes it more difficult to keep a flat part flat (i.e. air knives). But, we CAN do and we do it because of the value the anodizing adds benefits to the products.

Anodizing helps guard against the effects of the factory environment on the aluminum. Unprotected aluminum will form a powdering while oxide over time. Anodizing keeps the product looking better and longer even when using dissimilar metals in assembly, stainless shims, stainless screws, with aluminum bodies, it protects the accessories from even minor effects of cathodic corrosion.


Cathodic corrosion can occur in a highly humid environment or if the parts get wet. Dissimilar metals can act like a battery where the more active metal can corrode unless there is some form of protection. You can see this effect, for example, with rust around screws used on some buildings or machines because the screws are of one material while the metal it is screwed into is another. When paint wears away, it leaves unprotected metal that is more electrically “active” than the metal in the screw. By anodizing and protecting our product, Nex Flow ensures that our accessories will last longer and look better over time.

Powder Coated parts

Some of our cast zinc parts, specifically our Air Edger flat jet nozzles and cast Fixed X-Stream Air Amplifier, also have powder coating. It provides a much better finish and look to the product and again, extra layer of protection from the factory environment. Powder coating is an excellent protection in a factory environment. Powder coating parts adds intrinsic value to the products to the betterment of the customer providing a product that is longer lasting look better through time.

No Plastic in Vortex Tubes

Most manufacturers of vortex tubes use injection molded plastic “generators” which are used in the unit to initiate the compressed air spinning effect. Nex Flow machines their “brass” generators for that purpose instead of plastic. While plastic would be much less costly, brass offers a few advantages. Injection molding plastic will have some variations in production, especially as the mold wears out. By machining the metal generators we have much greater consistency with the parts which translates into much greater consistency in performance from one vortex tube to the next. Vortex tubes consist of several parts and of course, each part has a certain tolerance in manufacturing. Nex Flow has very tight tolerances on each part and the generators especially require very tight tolerances. The more pieces involved in assembling a part, the more the cumulative effect on the overall variation in tolerance and therefore performance since the operation of all Nex Flow products are based on aerodynamic shapes.

As the generator is such a critical component in a vortex tube, we recognize the need to use metal instead of plastic. Another advantage of using metal, in our case brass, instead of plastic is that plastic can possibly crack over time. If the compressed air supply is dirty the generator can also build up dirt and engrain itself, hence requiring replacement. The metal ones we use are easily cleaned. Sometimes vortex tubes or their packaged versions are used in very hot environments so the parts must be able to hold up in high temperature areas, especially when not operating. In these cases even competitive units replace their plastic generator with metal. Nex Flow vortex tubes and many of their packages are therefore more flexible in the environments where they can be used. While competitors would charge extra for a special product, our standard product can generally be used instead.

We do not mix Aluminum and Stainless Steel

Our vortex tube packages include tool coolers, mini coolers, adjustable coolers, panel coolers, etc. Of particular importance is the materials used in a panel cooler used for cabinet enclosure cooling and camera cooling. Many manufacturers will use a stainless steel vortex tube packages as a control panel cooler using aluminum housing and attachments. While not a problem in relatively benevolent factory environments, it can become an issue in very humid area or in applications where they are used in wash down conditions. Cathodic corrosion can occur described earlier with dissimilar metals with air knives. On one visit to a customer there was actually a competitive vortex tube cooling system with a big hole on the side of the assembly. Cabinet cooling applications are very critical because you do not want any possibility for moisture getting into the control panel. This is the reason vortex coolers should have the proper approvals to insure this does not happen (such as Underwriters Laboratory testing and approval).

Cabinet Coolers are essentially vortex tubes with a cover and some system to prevent moisture from getting inside of the cover and possibly then into the cabinet. This cover was aluminum and the vortex tube another material. The environment was a relatively wet environment, so over time cathodic corrosion cause the aluminum to corrode and create a hole in the protective cover. Thus, creating a potential risk for water to get into the electrical cabinet. It is for this very reason (preventing cathodic corrosion) that Nex Flow only has stainless steel covers for their stainless steel vortex tubes.

Similarly with all other packages systems, whether they are tool coolers or adjustable coolers, the packages are made with stainless steel only and not a mixture of stainless steel and aluminum.

It’s a Wrap

These are some of the reasons why Nex Flow treats their materials differently. While some of these “differences” in material handling and treatment can be more costly from a manufacturing point of view, they do offer significant added value to the products and a benefit to the customer, and still with a very competitive price.

Galvanic Corrosion – What it is and how to prevent it?

Galvanic Corrosion – What it is and how to prevent it?

Galvanic corrosion (also called bimetallic corrosion) is an electrochemical process in which one metal corrodes preferentially when it is in electrical contact with another, in the presence of an electrolyte.  This occurs in batteries for example where the cathode stays whole and the anode corrodes as the battery is working. Contrary to some believes – Galvanic corrosion does not only occur in water. Galvanic cells can form in any electrolyte, including moist air or soil, and in chemical environments. As an example, Over 200 years ago, the British naval frigate Alarm lost its copper sheeting due to the rapid corrosion of the iron nails used to fasten copper to the hull. The electrolyte in this case was salt water creating a galvanic cell.

In the case of the Alarm, the iron acted as an anode and was corroded at the expense of the copper which acted as the cathode. Just two years after attaching the copper sheets, the iron nails that were used to hold the copper to the ship’s underside were already severely corroded, causing the copper sheets to fall off.

Metals and metal alloys all possess different electrode potentials. Electrode potentials are a relative measure of a metal’s tendency to become active in a given electrolyte. When in the same environment, the more active a metal is likely it is to form positively charged electrode (anode) and the less active metal is more likely it is to form a cathode (negatively charged electrode).

The electrolyte acts as a conduit for ion migration, moving metal ions from the anode to the cathode. The anode metal, as a result, corrodes more quickly than it otherwise would, while the cathode metal corrodes more slowly and, in some cases, may not corrode at all.

 

The Nex Flow Difference Allowing Products to Last Longer than Competitors

While products such as air knives, air nozzles, air amplifiers, vortex tubes, etc. are not necessarily immersed in any electrolyte, if the environment is humid, or if the equipment is subject to wash down procedures, it is very possible that this type of corrosion can occur.  One example is mixing stainless steel and aluminum. There was one example where a competitive cabinet enclosure cooler was observed with a big hole on its side after some years of use. The stainless steel vortex tube inside combined with the aluminum housing, and the factory environment, over time caused the aluminum to act as an anode and started to corrode.

Nex Flow® takes certain steps and actions to prevent this from happening in their products allowing the products to last longer.  The first is to protect aluminum that is used, especially if combining it with steel or stainless steel. Our aluminum air knives for example – are anodized and as such have a protective coating to prevent an “electrical circuit” with the stainless steel shims used inside and the stainless steel screws used to hold the air knife together. In addition, the aluminum would tend to act as an anode anyway in an electrolytic environment and being so large compared to the stainless steel shim corrosion would be minimized. Regardless of whether galvanic corrosion would occur, the anodization also protects the air knife from any environment which bare aluminum is unprotected.  Similarly, Nex Flow anodizes all their aluminum parts – air knives, air jets, nozzles, air wipes and air operated conveyors such as the Ring vacs. Air amplifiers and flat jet nozzles which are aluminum zinc-cast are powder coated for longer life and also look better.

When it comes to vortex tube technology, such as cabinet enclosure coolers (panel coolers) and tool coolers, no aluminum is used. It is stainless steel with some brass internal parts. This works to ensure that you will not find any holes in Nex Flow Panel Coolers caused by galvanic corrosion ever. So when shopping for products to blow off, clean, move, and cool, look not only at the performance data, design and workmanship – all which are important of course – but also refer to the quality and type of material used in construction. You can also refer to this article on how to avoid galvanic corrosion. Remember that materials used and how they are put together does make a difference.

How often should I Perform Routine Check-ups on my Compressed Air System? What should I Look for?

In the previous blog, we focused on tips to prolong the life of your compressed air accessories. Today we will discuss the importance of establishing an inspection routine for your entire compressed air system along with a checklist of items to inspect.

 

Benefits of Regular Inspections

There are significant returns on the time you spend to inspect your compressed air system regularly. It just takes a little organization to collect detailed information and track changes. This data will encourage and direct your team to perform preventable actions to enhance your compressed air system’s performance. Other benefits of routine inspection include boosting productivity, decreasing waste, optimizing efficiency, seeing opportunities for compressed air applications, and planning for the future. This priceless information regarding efficiency and production, collected just by identifying leaks or areas of potential leaks will allow Nex Flow to recommend cost savings and increased reliability of equipment. It may also encourage your team to simply clean accessories, such as filters regularly.  The knowledge of  the acceptable working range of the gauges will ensure your system is running well. This knowledge can prevent major damage to equipment and prevent costly repair. It will also prolong the life of your equipment.  Simply put, regular inspections will allow your compressed air system to go further, do more, and be more valuable.

 

Before the Inspection

It is handy to record the equipment data on a tracking sheet before you begin your inspection.  Search through your files and write down the type of compressor, and manufacturer, the model and serial numbers, and flow rating Cubic Feet per Minute (CFM).  Other useful compressor information includes the horsepower at revolutions per minute (HP@RPM) and pressure rating pounds per square inch gauge (PSIG). Determine if the compressor is equipped with a pressure gauge or spring-loaded safety valve. Some compressors have a drain valve while others allow you to remove water and oil.

Know the dryer manufacturer, exit flow rate at the dew point (oC or oF), and model and serial numbers. Record the oil/water separator manufacturer, model and serial numbers, and the flow rate in CFM. Keep these inspection sheets in a binder and refer to them often.

 

Inspection Equipment

To make easy your inspection, Nex Flow offers leak detecting equipment that makes your routine checks effortless. Ultrasonic leak detectors identify issues before they become costly to repair. Auto drains use solenoid valves for compressed air systems where air could be released to the factory floor.


Once the damage, leaks, or cracks are identified, it is important to assess the severity of the issue and prioritize so that you can improve the efficiency of your compressed air system in the best most cost-efficient way. There are various types of compressed air system inspections: visual, mechanical, calibration, and tests. When performing a visual or mechanical test, it is important to keep track of the condition of the equipment: good, dirty, cracked, etc. The age of equipment is important.  Piping and tubing over time can build up scale and corrosion. The debris that collects may require cleaning. The following equipment may require replacement: Filter elements, parts in air tools such as O-rings, and tubing.

If the equipment is dirty – then the inspector should tell the employee responsible to clean the equipment. If the equipment is cracked or damaged, the maintenance personnel should be informed so that they can determine the return on investment for either repairing or replacing the equipment.  Tracking the condition of your compressed air system is as important as conducting regular inspections.

 

Inspection List

“Treatment without prevention is simply unsustainable” – Bill Gates

“It is usually impossible to know when you have prevented an accident.” – Mokokoma Mokhonoana

Being proactive by inspecting your compressed air system regularly not only increases the life span of your equipment, but also your operation, maintenance, down-time, and replacement costs will decrease. Leaks divert up to 25 percent of your compressed air away from your system. Finally, it is an excellent source of information that is helpful in determining a return in investment for repairs.

Assessments could include an accurate Cubic Feet per Minute (CFM) scoring for objective measurement. Single stage air compressors may reach pressures of 150 PSI. A single stage pump has higher CFM rating than a two-stage pump since every cylinder compressing air during every rotation.

Here is a list of items to inspect on a daily, weekly, and monthly basis:

 

Daily

The following items need to checked most often:

  • Listen for strange sounds
  • Keep everything tight: accessories, nuts, bolts, anchors, and screws
  • Check for leaks in the air inlet, receiver, delivery lines, coupling, filters, fittings, valves, and connectors.  
  • Search for damage to external equipment or component parts
  • Quality of pipes: Pipes that are clean, dry, and free of corrosion are great indicators of good quality tubing and hoses
  • Wear and tear of equipment, especially piping. Check for damaged, aging, or cracks.
  • Check for cracks in drive belts and coolers
  • Aging disconnects for leaks
  • Oil level on airline lubricators and replace oil regularly
  • Compressed air enclosure temperature
  • Operating temperature and pressure of the entire system
  • Room ventilation temperature should be as cool as possible
  • Clear and clean drain traps
  • Look for decreases in:
    • Pressure
    • Dew point
    • Refrigerant pressure
  • Check lubrication in the distribution system and valves
  • Check air quality. It should be free of debris and dry
  • Power supply to air compressor is working well
  • Ensure that manual distribution condensate traps have not been left open
  • Check accessories for wear, dirt, or leaks:
    • filters (oil and air),
    • separators (shims)
    • nozzles
    • pumps (air, vacuum)
    • fitted drive belts

Weekly

Dust and sludge corrode very quickly and increase leaking in compressed air equipment.  Keep the air in the system dry and filtered to reduce maintenance. It is recommended that you check the following weekly:

  • Lines
  • Gaskets
  • Fittings
  • Valves
  • Clamps
  • Connections
  • Filters for dust, dirt, or sludge
  • Tanks
  • Condition of oil
  • Compressor
  • Check the coolant and refill it regularly since the coolant prevents your system from overheating and prolongs the life of your compressed air system.
  • Use test buttons on electronic systems and manual bypass valve to ensure that all drain traps are working correctly

Monthly

The following items should be checked monthly:

  • Examine your compressed air system system’s response to manufacturing requirements
  • Calibrate sensors, controllers, and valves
  • Access your factory’s true production level efficiency and determine areas of improvement
  • Completeness of air compressor system assembly
  • Equipment rotation
  • Equipment identification, labeling and tagging
  • Adequate working space for ventilation
  • Control system
  • Comparison to plans and drawings
  • Safety devices
  • Test the following for operation efficiency:
    • Air compressor
    • Air dryer
    • Water and oil separator (if applicable)
    • Pressure
    • Filter and traps
    • System test
    • Receiver system is stopping at the set maximum pressure

Most importantly, take notes and track your information so that you can identify trends and budget for future expenses such as repair and replacement of aging equipment. Information that is important to note includes: operating temperatures, pressure, flow, and levels.

 

After the Inspection

Regular inspections should be conducted by the same employee but if that is not possible track the personnel who did the inspection by recording the following information: Name, Designation, Contact Information, the Time and Date of the inspection with signature sign off. The inspection should be acknowledged by your safety liaison officer and manager. The approval of the inspection should be signed by the person responsible for inspection. Typically, the person responsible is the factory floor manager.

Nex Flow technical experts are happy to help you inspect, analyze, and recommend areas in your factory environment that could improve cost savings, reliability, and productivity.

Louder Does not Mean More Power

LOUDER DOES NOT MEAN MORE POWER

Have you ever heard someone said something along the lines of “well that’s definitely a powerful machine – just listen to how loud it is”. While this may be true some of the time it is not always the case.  When working with compressed air, having a well-designed machines and accessory that is equally powerful at a much lower noise level is always a plus. Here are some things to consider about noise.

Loud Noise Means Less Efficiency

Have you ever tried to concentrate with loud noise? It is much more difficult to think clearly with loud noise. But it’s not just personal efficiency that can be negatively affected, the efficiency of the device making the noise can also be jeopardized. For instance, the noise involved with compressed air blow-off can mean a leakage or an inefficient design. It is still prevalent to use open tubes and jets and drilled pipe for blowing compressed air in production applications to clean, cool and move products. However, the exhaust noise using these methods can exceed 90 dBA depending on the pressure used and the bulk of the noise generated by this method of blowing with compressed air is from the energy lost as it exits the tube or pipe. In other words, the energy is loss as noise and pressure drop because the flow and force from dilled pipes and open tubes are mostly turbulent.

Turbulent Flow can be characterized as having tiny whirlpool regions and it also increases the amount of air resistance which is useful for accelerating heat conduction and thermal mixing. However, it is not useful for blowing applications. Turbulent flow will produce a great deal more noise. For blowing with compressed air, whether for cooling or cleaning or drying, laminar air flow is preferred.

Laminar Flow is when the flow of a fluid (in this case, air) follows a smooth path, or paths which never interfere with one another. One result of laminar flow is that the velocity of the fluid is constant at any point in the fluid movement path.

Just how much can noise be reduced and how much energy saved using blow off products that produce a laminar flow? The answer is – quite dramatic. A laminar flow nozzle can reduce noise levels as much as 10 dBA and reduce energy consumption by 30% – 40%. Likewise, laminar flow air knives which is basically long, flat nozzles are used to replace drilled pipe for higher efficiency. Some designs are extremely quiet and can reduce exhaust air noise to as low as 69 dBA.

 

High Noise Level is a Hazard

Of the roughly 40 million Americans suffering from hearing loss, 10 million can be attributed to noise-induced hearing loss (NIHL). NIHL can be caused by a one-time exposure to loud sound as well as by repeated exposure to sounds at various loudness levels over an extended period of time.

Sound pressure is measured in decibels (dB). The average person can hear sounds down to about 0 dB, the level of rustling leaves. A handful of people with very good hearing can hear sounds down to -15 dB. On the other end of the gauge, a sound that reaches 85 dB or stronger can cause permanent damage to your hearing even if exposed for a very short time. The timespan you listen to a sound affects how much damage it can cause. The quieter the sound, the longer you can listen to it safely. A very quiet sound will not cause damage even if you listen to it for a very long time. However, a sound that reaches 85 dB can cause enough damage to induce permanent hearing loss. Here are some common sounds.

  • A typical conversation occurs at 60 dB – not enough to cause damage.
  • A bulldozer that is only idling (not actively bulldozing) is loud enough at 85 dB – after only 8 hours it can cause permanent ear damage.
  • When listening to music – a stock earphones at maximum volume can generate sounds reaching a level of over 100 dBA. Loud enough to begin causing permanent damage after just 15 minutes a day!
  • A clap of thunder from a nearby storm (120 dB) or a gunshot (140-190 dB, depending on weapon), can both cause immediate damage.

It is estimated that as many as 30 million Americans are exposed to potentially harmful sounds at work. Even outside of work, many people participate in recreational activities that exposes them to harmful noise (i.e. musical concerts, use of power tools, etc.).

 

Designing the Future of Air Blow Off Technology

Nex Flow® Air Products Corp. continually perform and fund research to constantly improve the efficiency and safety of compressed air accessories. With this approach, we are able to offer noise reduction for compressed air technologies that are equally or more efficient than competitive units.



Air Nozzles

Our Air Nozzles are engineered to reduce noise by 10 dBA over open pipe, tube or jets and maximize laminar flow to increase force/compressed air consumed.

One of the oldest styles of air saving, noise reducing air nozzles are of a cone shaped design. But if you put every single design next to one another both energy saving and noise reduction will vary greatly because many times the aerodynamic design is neglected. Having the nozzle outside appearance as a cone shape in not enough. There are many other (proprietary) factors to consider to truly minimize turbulence and maximize laminar flow. The cone shaped designs are still the optimum style to use for maximizing total volume of flow produced per quantity of compressed air consumed and is especially ideal for cooling applications. Where cost is a factor, this model is ideal.

The Air Mag is another one of our engineered nozzle with patented design. The bullet shaped design trumps the cone shaped design for producing the highest force/quantity of compressed air consumed. The patented design allows the Air Mag to provide the furthest distance for laminar flow compared to competitive units. Other bullet shaped nozzles need to be close to the target as turbulent flow begins to occur after only a short distance from the nozzle. Our unique design helps significantly extend the range of the laminar flow. Due to increased complexity and manufacturing processes, they are more costly than the cone shaped designs. However, they are the best option for when force produced is an important factor.

Air Knives
When replacing drilled pipe with holes, the Nex Flow Silent X-stream Air Blade air knife lives up to its name. At 80 PSIG the unit is runs on just 69 dBA exhaust noise and uses the same air consumption as if running competitive units at 60PSIG. Extremely popular as they often replace competitive units in the field because of the design and quality of manufacture.

Other blow off products we offer include air flow amplifiers, air jets, and many more. Our accessories are used not only for blow off and cooling applications but can also be used for conveying, cleaning and to control static electricity.

The next time you hear a loud sound when using compressed air anywhere in the production line, don’t forget to check and see what is making that noise. Loud noise is a health hazard and is often wasted energy. So, if the source of the noise is coming from an open tube, open pipe or a drilled pipe of any sort, chances are, you can reduce this noise very quickly and even reduce energy and get better performance by using low cost products from Nex Flow®.

Compressed Air Standards ISO 8573, ISO 12500, CFR 1910.242(b) and related terms

Recommended compressed air standards and related terms

There are several major standards to consider with the use of compressed air – two with regard to air quality, one for compressed air safety and any local standards related to noise.

Since compressed air is used in so many areas where it can come in contact with food or medicines, air quality standard is probably the most important standard related to compressed air use.  ISO 8573, established in 1991 is a multi-part standard for compressed air quality to facilitate compressed air system component selection, design and measurement. Part 1 classifies contaminant type and assigning air quality levels, and Parts 2 through 9, define testing methods to accurately measure a full range of contaminants within the end user’s facility.   The ISO 8573 Air Quality standard does not however address how manufacturers are to test and rate the filters. The ISO 12500 filter standard was developed to address this issue and establishes how manufacturers test and rate compressed air filters by defining critical performance parameters (namely, inlet oil challenge, inlet compressed air temperature and pressure measurement techniques) that will deliver certifiable filter performance information suitable for comparative purposes.

ISO 12500 is a multi-part standard, with ISO 12500-1 encompassing the testing of coalescing filters for oil aerosol removal performance, ISO 12500-2 quantifies vapor removal capacity of adsorption filters, and; ISO 12500-3 outlines requirements to test particulate filters for solid contaminant removal.

Occupational Safety and Health Administration (OSHA) standard 1910.242(b) requires that compressed air used for cleaning purposes must be reduced to less than 30 psig (pounds per square inch gauge, 204 kPa). Compressed air used for cleaning must only be permitted with effective chip guarding and personal protective equipment to protect the operator and other employees from the hazards of the release of compressed air and flying debris. Standard 1917.154, which addresses similar hazards in the maritime industry, explicitly prohibits the use of compressed air for personnel cleaning. While this particular requirement is not specifically applicable in the general industry setting, it is recognized as good practice for all industries.  Standard CFR 1910.242(b) is a major guideline for Nex FlowTM  in the design of their air saving nozzles, to keep dead end pressure under 30 psig.

Noise standards vary around the world. Compressed air, when exhausted from cylinders, air nozzles especially, produce noise – both impact noise and exhaust noise.  Please refer to our article on noise levels for more detail.

Terminology used in compressed air systems can be confusing, so we have defined some for you along with common units and conversions below (the terms do not include terms related specifically to the compressors themselves – just terms downstream).

Absolute Pressure – The measure of pressure compared to the absolute zero pressure of an empty space—e.g., a vacuum.  Expressed in pounds per square inch (PSI) or bar (BAR) or kilopascals (KPa). 1 bar equals 14.7 PSI equals 100 KPa

Actual Capacity – Also known as Free Air Delivered (FAD), this is the amount of gas actually compressed and delivered (at rated speeds and conditions) to a discharge system.  Expressed as cubic feet per minute (CFM) or liters (LPM) per minute where 1 CFM = 28.32 LPM.

Air Consumption – The compressed air consumed from the compressed air system by any machine, air tool or blow off device to operate expressed at a particular input pressure to the device and usually in SCFM or SLPM as defined further below.

Amplification Ratio – A term typically used with blow off devices such as engineered air nozzles, jets, air amplifiers, air knives to express the amount of increase in air flow compared to the compressed air used.  Should be expressed at a particular distance from the blow off device. It is usually and average over various inlet pressures.  

Atmospheric Pressure – The measured surrounding pressure of a particular location and its altitude.  Measured in PSI or BAR or KPa as explained above

Blow Off Force – The force produced by a blow off nozzle, jet, air knife or amplifier on pounds force or grams as a particular pressure at the device inlet, expressed at a particular distance from the device.

Free Air CFM or LPM– Air’s flow rate at a specified point and condition, which is then converted to surrounding conditions.

Actual CFM or LPM – Air’s flow rate at a specified point and condition.

Inlet CFM or LPM – Air that is flowing through the inlet filter or valve of a compressor (under rated conditions).

Standard CFM or LPM – The flow rate of free air that is measured and then converted to a uniform set of reference conditions.  Normally expressed as SCFM or SLPM.

Dew Point – The temperature point at which moisture starts to condense in the air, if the air continues to be cooled at a single pressure.

FiltersDevices to remove particles, moisture, and lubricants from surrounding air.

Gauge Pressure – Normally expressed in pounds per square inch (PSIG), this is the pressure most instruments are used to determine.

Intercooling – Process in which heat is removed from gas or air between the stages of compression.

Leak – An unintentional loss of compressed air to surrounding conditions of a compressor.

Pressure – The measure of force per unit area, conveyed in pounds per square inch (PSI) or bar or KPa as compared previously.

Pressure Dew Point – The temperature that water starts to condense out of air for a given system pressure.

Pressure Drop – A pressure loss in compressed air systems caused by restriction or friction. Expressed as PSI, BAR or KPa.

Rated Capacity – At a specified point, this is the volume rate of flow at rated pressures.

Rated Pressure – The measure of the operating pressure of air compressors.

Standard Air – Used in ISO standards, this refers to air at 14.7 pounds per square inch absolute (PSIA), 68°F (20°C), and dry (0% relative humidity).

 

FEATURED PRODUCTS

[one_third][image src=”https://www.nexflow.com/wp-content/uploads/2023/01/10003x.png” size=”” width=”” height=”” align=”center” stretch=”0″ border=”0″ margin_top=”” margin_bottom=”” link_image=”” link=”https://www.nexflow.com/products/energy-efficient-blow-off-products/air-knives/silent-x-stream-air-blade-air-knife/” target=”_blank” hover=”” alt=”” caption=”Silent X-Stream® Air Blade® Air Knife” greyscale=”” animate=””][button title=”View Product” link=”https://www.nexflow.com/products/energy-efficient-blow-off-products/air-knives/silent-x-stream-air-blade-air-knife/” target=”_blank” align=”center” icon=”” icon_position=”” color=”#27367a” font_color=”” size=”1″ full_width=”” class=”” download=”” rel=”” onclick=””][/one_third]

[one_third][image src=”https://www.nexflow.com/wp-content/uploads/2017/07/am40-3.png” size=”” width=”” height=”” align=”center” stretch=”0″ border=”0″ margin_top=”” margin_bottom=”” link_image=”” link=”https://www.nexflow.com/products/energy-efficient-blow-off-products/air-amplifiers/standard-fixed-air-amplifiers/” target=”_blank” hover=”” alt=”” caption=”Standard (Fixed) Air Amplifier” greyscale=”” animate=””][button title=”View Product” link=”https://www.nexflow.com/products/energy-efficient-blow-off-products/air-amplifiers/standard-fixed-air-amplifiers/” target=”_blank” align=”center” icon=”” icon_position=”” color=”#27367a” font_color=”” size=”1″ full_width=”” class=”” download=”” rel=”” onclick=””][/one_third]

[one_third][image src=”https://www.nexflow.com/wp-content/uploads/2022/03/45001-600×600-1.png” size=”” width=”” height=”” align=”center” stretch=”0″ border=”0″ margin_top=”” margin_bottom=”” link_image=”” link=”https://www.nexflow.com/products/energy-efficient-blow-off-products/air-jets/air-jets/” target=”_blank” hover=”” alt=”” caption=”Air Edger® Air Jet” greyscale=”” animate=””][button title=”View Product” link=”https://www.nexflow.com/products/energy-efficient-blow-off-products/air-jets/air-jets/” target=”_blank” align=”center” icon=”” icon_position=”” color=”#27367a” font_color=”” size=”1″ full_width=”” class=”” download=”” rel=”” onclick=””][/one_third]

Air Amplifier vs. Air Jet vs. Air knife – How do I know which one to use

What are Air Amplifiers, Jets, and Knives?

Air Amplifier

There are two types of Air Amplifiers – Air Pressure Amplifiers and Air Volume Amplifiers.   This article talks about volume amplifiers, which harness the energy from a small parcel of compressed air to produce high velocity and volume, low pressure air flow as the output. It can amplify the volume up to 17 times the air consumed.

The volume amplifier uses an aerodynamic effect called “the Coandă effect”. One example of this effect is seen on the Coandă angles on airplane’s wing that can cause the airplane to lift. In an airflow amplifier, the force is directed outward to cool or dry a surface. Pressure normally lost as noise and is converted into amplified and high velocity laminar flow.  

Compressed air stream flows through an air inlet, clinging to the “Coandă” profile inside. The compressed air is throttled through a small ring nozzle at high velocity and guided towards the outlet. This results in a low-pressure area at the center, inducing a high volume of surrounding air flow to the airstream.  Airflow is further amplified downstream by entraining additional air from the surroundings at the exit. This adds further volume and flow to the primary airstream via a similar method. The combined flow of primary and surrounding air exhausts from the Air Amplifier is a high volume, high velocity flow.

The jets of air in the amplifiers create a high velocity flow across the entire cross-sectional area, which pulls in large amounts surrounding air, resulting in the amplified outlet flow.  

Note: Air Amplification Ratio is the ratio of the air flow in standard cubic feet/minute (SCFM) or standard liters per minute (SLPM) at the exit point divided by compressed air consumption with the same unit. This ratio can vary with inlet pressure and temperature as well as the density of the inlet air, so the figure provided is a weighted average. The ratio may be reduced if any back pressure is put on the amplifier exit or suction end by attaching a hose, pipe or tubing

There is a balanced between amplified air flow and air velocity. Any air amplification ratio higher than 17 will slow the velocity so much that the blow off force becomes ineffective and the cooling effect lost.

NOTE: It is recommended to regulate the compressed air supply so the very least amount of air necessary is used.  Install a solenoid valve on the compressed air supply side to turn the air off when the air amplifier is not in service.

Air Jet

Air Jets are either annular like Air Amplifiers or in a flat design (air edger).  Due to their size and “Coanda profile”, annular Air Jets provide a greater concentrated force using amplified air.  This makes them ideal for applications like part ejection. Nex Flow Flat air jets or Flat Jet Nozzles are a compressed air operated chamber of shorter length than an air knife with a higher force and flow design. The internal chamber and outside shape are designed to minimize pressure drop and convert this into flow and force.

Flat Air Jet Nozzle (Air Edger®) is used when a much stronger forced air is required than an air knife can provide.  The flat jet nozzle can be mounted on manifolds of different lengths (holding 2, 4, or 6 units typically and more). Like an air knife – shims can be added to produce higher force. Due to the chamber design that is quite different from an air knife – a greater range of shims can be added to the flat nozzle allowing it to produce much higher air force than an air knife is able to provide.

The Air Edger® Flat Jet is available with various size “gaps” all set with a flat stainless steel shim. Three standard shim sizes are available – .004” (.10 mm), .008” (.2mm) and .020” (.51 mm). Shims can be “stacked” for a larger gap and greater force up to a maximum gap of .024” (61 mm).

Air Knife

An air knife is positive pressurized air chamber that contains a series of holes or continuous slot through which a predetermined air volume and velocity exits. The air is blasted through the air chamber using an air compressor or industrial blower. The air knife is typically made from either aluminum or stainless steel of various lengths but can be made of other materials as well.

Note:  Electrical currents from anti-static bars can also be injected into the air knife air stream to neutralize the static electricity charge on some surfaces.

Things to consider when choosing an air knife includes:

  • Force required
  • Material: typically aluminum, stainless steel, and special plastics
  • Required Length or distance from the compressed air source to the target.
  • Installation Cost
  • Noise
  • Air Consumption

Applications of Amplifier, Jets and Knives

Air Amplifier

There are many different applications for air amplifiers to completely list – but main applications include blow off, cooling, and ventilation:

  • Blow off:
    • Purging tanks
    • Used in ventilation of fumes, smoke, lightweight materials from automobiles, welding, truck repair, plating or holding tank or other confined spaces.
    • Circulate and blow off air
  • Cool hot parts: Cooling dies and molds
  • Dry wet parts
  • Clean machined parts:
    • Vacuum device to clean machined parts and confined places: dust collection, remove metal chips and scrap, collect and move dust (grain operations)
    • Clean a conveyor belt or web
  • Convey:
    • Used to convey small parts, pellets, powders, and dust.
    • Exhaust tank fumes; Used to remove fumes quickly and efficiently for venting applications. The fumes can be ducted away, up to 50 feet (15.24 m), and the amount of suction and flow is easily controlled.
    • Moves air 12 to 20-fold in duct applications and up to 60 times in areas with no ducts.
    • Component removal, valve gates, and automated equipment for ejection molding systems
    • Distribute heat in molds/ovens
    • Sort objects by weight
  • Used as tools in production lines, wood working, aerospace, construction, dentistry, heath care and hospitals
  • Used in assembly, chemical processing, robotic cells, and chemical processing
  • Increasing existing plant air pressures
  • Used in medical, food, and pharmaceutical installations
  • Used in Pneumonic cylinders: Enhances efficiency of pneumonic tools and machinery
  • Bottle molding applications
  • To enhance the “WOW!” factor of amusement rides in certain thrill rides; such as roller coasters
  • Coat a surface with atomized mist of liquid
  • Activating adhesives and heating-shrinking: High air amplification puts much more airflow through the heater coils than would be possible with an ordinary fan or blower. The hot airstream can be felt over 10′ (3m) away!

Based on Type, Size, and Material:

Type Outlet Diameter Application
Standard (Fixed)1 ¾” (19 mm) High temperature /corrosive (up to temperature of 700 F (371 C)
1-1/4”
(32 mm)
Cooling  

Moving hot air for uniform heating in ovens or furnaces

Exhaust

Circulate air, move smoke, fumes, and light material

Clean and dry parts

2” (51 mm)
4” (102 mm) Circulate air, move smoke, fumes, and light material

Clean and dry parts

Venting or cooling

8” (203 mm) Circulate air, move smoke, fumes, and light material

Venting or cooling

Adjustable2 ¾” (19 mm) High temperature /corrosive (up to temperature of 700 F (371 C)
1 1/4” (32 mm) Cooling  

Moving hot air for uniform heating in ovens or furnaces

Exhaust

Circulate air, move smoke, fumes, and light material

Clean and dry parts

2” (51 mm)
4” (102 mm) Circulate air, move smoke, fumes, and light material

Clean and dry parts

Venting or cooling

  1. Available 0.002 and 0.003” shims can be added
  2. Gap setting from 0.001” to 0.004” to control the output flow and force required.
Material Application
Plastic Cooling  

Moving hot air for uniform heating in ovens or furnaces

Exhaust

Circulate air, move smoke, fumes, and light material

Clean and dry parts

Aluminum High temperature/corrosive
Stainless steel High temperature/corrosive (up to temperature of 700 F (371 C)

Medical, food, and pharma installations

Blow off, cooling, or venting

Special plastic versions are used to cool materials in an electrical power grid where metals can not be used. Alternative materials can be machined to be used as an air amplifier unit in corrosive environments where stainless steel is not sufficient.

Nex Flow manufactures special Air Amplifiers to your specification including special flanged mounting style or with a PTFE plug to avoid sticky material build up.

Benefits to Using Air Amplifiers: For air amplifiers, the outlet flow remains balanced and minimizes wind shear, sound levels are typically three times lower than other types of air movers. Both the vacuum and discharge end of the Air amplifier can be ducted, making them ideal for drawing fresh air from another location or moving smoke and fumes away. They are ideal for increasing existing plant air volume for blowing or cooling and for venting.

  • Compact, lightweight, portable
  • No electricity
  • No moving parts – no maintenance
  • Ends are easily ducted
  • Instant on/off
  • Longer life in difficult environments than competitive models.
  • Lower compressed air consumption than ejectors and venturi.
  • Maintenance free with output easily controlled, safe to use.

Air Jet

Flat jet air nozzles are used for a concentrated and targeted application of air and other gases. They are used to provide a powerful stream of high velocity laminar flow and high force for blow off and cooling applications where air knives are not sufficient.

Annular Air Jets entrain large volumes of surrounding air through the Jet (like Air Amplifiers) and are more efficient flow amplifiers than Air Nozzles. They cover a larger blow off target than a Nozzle and are ideal for part ejection. An air nozzle provides a point force, while the Air Jet acts more like a “hand” and covers a larger area in blow off coverage.  This can be an advantage in part ejection where two nozzles are normally required to “direct” the ejected part while only one jet is needed.  This can dramatically reduce energy required as well as have a lower footprint on the machine.

Applications of an air jet:

  • Part cleaning
  • Chip removal
  • Part drying
  • Part ejection
  • Air assist
  • For moving heavier material that requires extra force to move.

Benefits to using an Air Jet: Air consumption and noise levels are minimized with its special design and configuration while providing a strong blow off force.

  • Reduced compressed air cost
  • 10 dBA average noise reduction
  • Conserve compressed air
  • Compact
  • Improved safety
  • Meets OSHA noise level requirements
  • Improved production

 

Air Knife

An air knife is used to create an air curtain to clean, dry, or cool a surface of a product without mechanical contact.  In most cases, the air knives are stationary while the products that are cleaned or cooled are traveling on conveyors. In other manufacturing applications, the air knife moves or rotates over the surface of the stationary product. In rare circumstances, an air knife can be used to cut products. One such example in the food industry is by using an air knife to cut into cake frosting.

The following is a comprehensive list of air knife applications using compressed air:

  • An air knife is used to blow off a curved or flat surface of unwanted liquid (such as water), grime, airborne debris, dirt, or dust from surfaces or objects using a high-intensity, uniform sheet of amplified airflow.
  • Air knives are a good cooling tool.
  • They are also used to control the thickness of liquids
  • Used in food, pharmaceutical, packaging, automotive, mining, heavy industries (steel and aluminum), and circuit board manufacturing, and printing
  • Used the first step in recycling to separate lighter particles from other components.
  • Used in post manufacturing of parts for drying, conveyor component cleaning, and to draw in waste fumes or exhaust.  
  • Create an invisible air barrier to separate heated or cooled environments from one another in industrial applications such as continuous metal heat treating ovens, cold process or storage areas in food processing or dust containment for the entrance to clean rooms.
  • Removal of excess oils, liquids, and dust from flat and curved surfaces
  • Part Drying after wash
  • Conveyor cleaning
  • Component or Parts Cooling
  • Drying or Cleaning of Moving Webs
  • Environmental Separation (air barriers)
  • Blow off in pre-paint systems
  • Bag opening in filling applications
  • Scrap Removal in converting operations

Benefits to Using compressed air – air knife: Compressed air operated air knives are more compact in design, easier to control, and far less noisy than blower operated units.  

  • Quiet – 69 dBA for most applications
  • Uniform airflow across entire length
  • Minimal Air Consumption
  • High Force/Air Consumption Ratio
  • Variable force and flow
  • No moving parts – maintenance free
  • Easy mounting
  • Compact, rugged, easy to install
  • Stainless steel screws in all models
  • Standard Units 30:1 air amplification
  • X-Stream Units 40:1 air amplification
  • X-Steam Units can do the same job as competition at lower pressures
  • Materials Anodized Aluminum, Hard Anodized Aluminum, 303/304 stainless steel and 316L stainless steel
  • Stainless Steel shim
  • Special Lengths Available

Blower operated systems are advertised as being more energy efficient but that is not always the case.  In intermittent blowing and lower pressure applications, compressed air knives can be as energy efficient as blower operated systems.  

Compressed air operated air knives have smaller/more compact dimensions, more rugged, quieter, and do not have the costly maintenance compared with blowers, making compressed air operated systems the smart choice especially when space is a premium. A compressed air operated air knife provides significantly more force than a typical blower.

Air knives are ideal for liquid and dust blow off. Air knives provide clean, heated air; low operating noise (even without sound enclosures); and easy installation and operation.

Drawbacks to Using Compressed air – Air knife: Not good for heavier material that needs to be removed. In this case, choose an air jet.

Conclusion

Compressed air operated Air Amplifiers, Jets, and Knives are effective tools for your manufacturing environment.  It is critical to know the requirements of your application to choose the correct product. Experts at Nex Flow are happy to assist you in choosing your compressed air solution for your manufacturing application.

Factors to Consider when Selecting an Air Nozzle

What is an Air Nozzle?

An air nozzle controls the direction or characteristics of air flow by converting pressure into the flow. Air Nozzles are the smallest air amplifiers for point application. Frequently Nozzles control the flow rate, speed, direction, mass, shape, and pressure of the stream that emerges. In a nozzle, the velocity of fluid increases at the expense of its pressure energy. Air nozzles are one of the most common products used in a factory environment. They are primarily used for blowing off debris and liquid and for cooling or drying parts. It is using them for cleaning, part ejection, and conveying.

The original compressed air-operated engineered nozzle is a cone that provided the most flow amplification. They are helpful for compressed air applications because they entrain surrounding atmospheric air with the compressed air.

It is often a pipe or tube of varying cross-sectional area and can direct or modify a fluid’s flow (liquid or gas). Inefficient air nozzles consist of an air exit hole for the compressed air at the end of a pipe attachment. The pipe usually has a small hole on the side to release compressed air, reduce dead-end pressure, and create a helpful blow-off force.  

NOTE: Always use filtered compressed air to ensure the air supply remains clean and dry.

Properly engineered air nozzles work by using the Coandă effect – entraining surrounding air and the compressed air in a ring of holes around the bottom or sides of the nozzle. The exiting air is a concentrated, high-velocity, laminar flow stream of amplified air. Standard cone-shaped air nozzles, with air exit holes around the bottom of the nozzle, provide the best flow per unit of air consumption and are best suited for light blow-off and cooling applications, thus providing a low-cost solution for the task. Modern engineered nozzles have holes on the bottom or sides with hole spacing, sizing, and internal design crafted to optimize for the highest force per unit of air consumed.

 

NOTE: Always use filtered compressed air to ensure the air supply remains clean and dry.

 

Types of Nozzles

In most factories/manufacturing environments, many types of nozzles satisfy the requirements for specific applications. The challenge is to find the nozzle that provides the best performance at the optimal operating cost.

There are several types of engineered nozzles available:

    • Cone Shaped Air Nozzles are excellent flow amplifiers. They are used for cooling because they have high flow/CFM compared to other engineered nozzles. They dramatically reduce noise pollution in a factory and are suitable for energy conservation. Cone-shaped air nozzles reduce compressed air costs by conserving air. They are compact and have a 10-dBA average noise reduction to improve safety in the work environment. They meet OSHA noise level requirements. Overall, these air nozzles will enhance the production of your factory environment. These Air Nozzles replace an open pipe from 2 mm to 0.5 inches and save 30% in compressed air. Note that not all cone-shaped nozzles are equal, as the internal design impacts performance.
    • Air Mag Air Nozzles is a bullet-shaped finned nozzle with a unique patent design to focus compressed air from the supply line and entrained air from the surroundings to a sharper laminar flow of air with the highest force per SCFM than other bullet-shaped finned nozzles on the market. They have the lowest air consumption for the force produced, lower noise levels, no whistling sound, are rugged, and are made of a single piece for extra strength.

      The exit nozzle is oriented to increase force/CFM over other competitive nozzles by 10%. The Air Mag Nozzle comes in the following sizes for various applications:
      • 1/4″ is the average size for air guns. This size is used for most applications and is usually attached to a ¼” pipe or hose.
      • ½” is for heavier blow-off applications. It connects to a ½” pipe or hose and is a standard nozzle used with large air guns.
      • 4, 5, and 6 mm are available for small applications and are usually attached to small copper tubes and smaller – often low-cost – air guns. There is a 1/8″ adaptor for the 6 mm nozzle to adapt it to a 1/8″ pipe.
  • More types include

    • A flat Jet Nozzle is a compressed air-operated chamber (flat nozzle, flat jet), which is a smaller length than an air knife. It also has a higher air force and flow design. They are mounting the flat jet nozzle on manifolds of different sizes (holding 2, 4, or 6 units typically or more). Also, use it when a much stronger forced air is required than an air knife can provide. They are very efficient and specially designed to provide a powerful stream of high-velocity laminar flow, a high force for blow-off applications, and cooling where air knives do not provide enough force. The air consumption and noise levels are minimized with the unique design, which converts pressure usually lost as noise and pressure drop into proper flow and energy. Shims can be added to modify the force. This nozzle is used for part cleaning, chip removal, part drying, part ejection, and air assist. Nex Flow takes care in designing our flat jet nozzle and ensures it meets the OSHA noise level requirements.
    • Ring Ionizer-Ionizing Nozzles discharge and clean surfaces of non-conductive materials by incorporating an anti-static pin. For manual use, mounting to a handgun is possible.
    • Laval Effect Nozzle uses an hourglass exit for the existing compressed air to accelerate the exiting compressed air. While they are supposed to reduce overall noise, they tend to have a higher-pitched noise. The force tends to dissipate if the nozzle is not close to the target blow-off. For this type of nozzle, the noise and effectiveness are questionable compared to a nozzle using the Coandă effect.
    • Spray nozzles that use compressed air produce a fine spray of liquids mixed with the compressed air. They include atomizer nozzles and air-aspirating nozzles.

Materials Used to make Nozzles.

Choosing the material that the nozzle is constructed of will determine the unit’s wear. Nozzles, over time, could begin to clean a surface unevenly or over-spraying, which wastes chemicals, water, energy, and operating costs.

  • Anodized aluminum is ideal for blow guns and part ejection of heavier viscosity liquids.
  • 303/304/316L Stainless Steel is often used for liquid and lightweight part blow-off applications for food, pharmaceutical, and corrosive environmental applications. 316L stainless steel is more expensive but worth the cost when the manufacturing environment has high chloride and salt exposure.
  • Cast zinc is rugged and provides extra strength for use in harsh environments.
  • Plastic nozzles are of lower cost and are often used but can easily break and, in some applications, may be dangerous with the risk of breaking.
  • Copper or brass are optimum for blow-off nozzle materials since they have low friction coefficients.  

Advantages of Using an Air Nozzle

Using air nozzles, replacing non-engineered air nozzles, or replacing old nozzles with more efficient products can save high operating costs by using compressed air more effectively. There is also an average 10 dBA reduction in noise, and it meets OSHA standards, which improves the working environment. Nozzles provide precise, repeatable drying and blowing-off capabilities for all applications.

Accessories

Air nozzle is available with the following accessories:

  • Copper tubes can be attached to some nozzles to aim the direction of the flow. The copper tube is pressed to fit into the customer’s existing system.
  • A rigid-flex hose can be bent into shape to aim the nozzle at the target. It is an all stainless-steel hose that does not break after a few bends like competitive rubber hoses with simple copper inserts. The stainless-steel construction allows for use in any challenging environment. Rigid-flex hose nozzle is resistant to creep and crimping.
  • Manifolds to attach more than one nozzle or flat jet nozzle
  • Swivels
  • Regulators
  • Pneumatic Super Separator
  • Magnetic base
  • PLC Flow Control System (PLCFC)
  • Static meters (used with Ionizing nozzles)

Factors to Consider when Selecting a Nozzle

When considering an engineered nozzle, there are several factors to consider. It is recommended, when reviewing specification, to research the distance the force/CFM were taken and the line pressure. Determine if the force and pressure are suitable for your application: test and use brands known for improved performance and quality like ours. Stay wary of copies and ask if you need continuous or intermittent air supply.

Don’t forget to consider sensors and timers when applicable for energy savings. Besides the nozzles themselves – it is also essential to consider the compressed air piping system to ensure efficiency.

Lubricants corrode some materials from the compression process, which leads to leaks and particulates in the air stream. Copper, brass, steel, and aluminum are optimum choices for nozzle materials as they have low friction coefficients.

 

FEATURED PRODUCTS

[one_third][image src=”https://www.nexflow.com/wp-content/uploads/2017/08/An-image-showing-four-Air-Nozzle-Side-by-Side.png” size=”” width=”” height=”” align=”center” stretch=”0″ border=”0″ margin_top=”” margin_bottom=”” link_image=”” link=”https://www.nexflow.com/products/energy-efficient-blow-off-products/air-nozzles/air-nozzles/” target=”_blank” hover=”” alt=”” caption=”Standard Air Nozzle” greyscale=”” animate=””]

[button title=”View Product” link=”https://www.nexflow.com/products/energy-efficient-blow-off-products/air-nozzles/air-nozzles/” target=”_blank” align=”center” icon=”” icon_position=”” color=”#27367a” font_color=”” size=”1″ full_width=”” class=”” download=”” rel=”” onclick=””][/one_third]

[one_third][image src=”https://www.nexflow.com/wp-content/uploads/2017/08/Air-Mag-Overview.png” size=”” width=”” height=”” align=”center” stretch=”0″ border=”0″ margin_top=”” margin_bottom=”” link_image=”” link=”https://www.nexflow.com/products/energy-efficient-blow-off-products/air-nozzles/air-mag-air-nozzles/” target=”_blank” hover=”” alt=”” caption=”Air Mag® Air Nozzle” greyscale=”” animate=””]

[button title=”View Product” link=”https://www.nexflow.com/products/energy-efficient-blow-off-products/air-nozzles/air-mag-air-nozzles/” target=”_blank” align=”center” icon=”” icon_position=”” color=”#27367a” font_color=”” size=”1″ full_width=”” class=”” download=”” rel=”” onclick=””][/one_third]

[one_third][image src=”https://www.nexflow.com/wp-content/uploads/2017/08/Flat-Jets.png” size=”” width=”” height=”” align=”center” stretch=”0″ border=”0″ margin_top=”” margin_bottom=”” link_image=”” link=”https://www.nexflow.com/products/energy-efficient-blow-off-products/air-nozzles/air-edger-flat-jet-nozzles/” target=”_blank” hover=”” alt=”” caption=”Air Edger® Flat Jet Air Nozzle” greyscale=”” animate=””]

[button title=”View Product” link=”https://www.nexflow.com/products/energy-efficient-blow-off-products/air-nozzles/air-edger-flat-jet-nozzles/” target=”_blank” align=”center” icon=”” icon_position=”” color=”#27367a” font_color=”” size=”1″ full_width=”” class=”” download=”” rel=”” onclick=””][/one_third]

 

How do you determine the best nozzle for the following applications?

Cleaning

For cleaning applications, choose a nozzle with the highest force/unit airflow (Force/SCFM ratio), such as the Air Mag nozzle. It is also essential to consider air consumption. A regulator can be used to cut back the pressure to set the required force. Any additional force above the requirement will use more energy and cost more. Air pressure loss will result from compressed air through a pipe attached to a nozzle.

The higher the airflow through the pipe, the larger the pressure drop and pressure at the entrance of the nozzle. Any extra pressure (for example, 1 SCFM) entering the piping that is the same size as the nozzle – will cause the pressure to drop at the entrance of the nozzle. Therefore, for cost savings, the correct pressure/force must be determined at the entrance of pipping attached to the nozzle so that there is no pressure drop when the compressed air enters the nozzle.

The reduced air pressure/force will also have less noise pollution and provide a safer manufacturing environment for your employees. Air Edgers (Flat Jet nozzles) are also popular for cleaning flat or curved surfaces and have the advantage of having the force varied by adding/removing shims, which control the air exit volume and force.

Other factors that can negatively impact spray nozzle performance are plugging, erosion, corrosion, scale build-up, caking, accidental damage, and improper assembly. These are common in washing and rinsing operations, especially when using caustic solutions. Establishing and implementing a nozzle maintenance program is the most effective way to prevent and minimize costly spray nozzle problems.

Static Control – Ion air nozzles/Ring ionizer nozzles are highly effective at discharging and cleaning non-conductive materials. These nozzles can be mounted on handguns for confined workspaces. These are flexible, light, and easy to use for discharge processes.

Drying

When nozzles are used for drying, the traditional cone-shaped nozzle is recommended. For larger applications requiring several nozzles, more energy will be saved when using the Air Mag nozzles. Anodized aluminum or 303/304 Stainless Steel standard strength nozzles with 1/8″, ¼”, male NPT connection is ideal for blow-off liquids applications. Model 47001 is designed to fit into small spots and is used by many machine builders for blow-off applications. Model 47003 (anodized aluminum), Model 47003S (303/304 Stainless Steel), and Model 47003S-316L (316L Stainless Steel) –with a 1/8″ male NPT connection is ideal for most blow-off applications involving liquids.

Drying large flat or curved surfaces

Air Knives are like rows of linear air nozzles that can be made to very long lengths. Air knives provide uniform airflow across the entire length of the air knife. It provides high velocity and a constant air stream for fast drying and blow-off in a factory setting. Air knives are maintenance-free because there are no moving parts. They are safe because they have low noise pollution. Air knife kits are available, which include an air knife, extra shims, filter, pressure regulator, and gauge.

Cooling

Using standard cone-shaped air nozzles that are efficient at converting pressure to flow is a good choice when selecting nozzles for cooling. These nozzles are better for cooling as they have less force/CFM but more flow/CFM than the more engineered nozzles. Round air amplifiers are essentially very large low-pressure but high-volume nozzles ideal for cooling molded parts and castings. They move large volumes of air using a small amount of compressed air, making it economical to operate.

Ejection of Heavier Liquids

Model 47004 (anodized aluminum), Model 47004S (303/304 Stainless Steel), and Model 47004S-316L (316L Stainless Steel) are a strong force and high flow amplification nozzles with a 1/4″ male NPT connection is ideal for most blow-off applications involving liquids and even lightweight parts and often used for heavier liquid. The 47010 is a higher-force nozzle but has less distance for laminar flow than the 47004. It has an anodized aluminum ¼” female NPT fitting nozzle with a Coandă profile resulting in extremely strong force at a distance. This nozzle is good for blow guns. It has a higher force for less distance for laminar flow.

About Nex Flow

Nex Flow manufactures specialized compressed air solutions that are easy to install and reliable. All products reduce noise in factories to enhance the safety of your environment. Nex Flow manufactures high-quality, economical, specialized compressed air solutions for blow, off, cooling, drying, and moving with representatives worldwide. Choosing Nex Flow means obtaining the best-customized solution, including full technical support. Our customer technical support provides blowing angle and direction tips during installation. All compressed air blow-off, moving, and cooling unit products have a five-year warranty against manufacturer’s defects.

Factors to consider when choosing Air knife VS Flat Jet Nozzle

An air knife is used to blow off a curved or flat surface of unwanted liquid (such as water), grime, airborne debris, dirt, or dust from surfaces or objects using a high-intensity, uniform sheet of amplified airflow. While a flat jet nozzle (flat nozzle, flat jet) is a compressed air operated chamber, which is of shorter length than an air knife and has a higher air force and flow design.

Air Knife

An air knife is positive pressurized air chamber that contains a series of holes or continuous slot through which a predetermined air volume and velocity exits. The air is blasted through the air chamber using an air compressor or industrial blower. The product is typically made from either aluminum or stainless steel of various lengths but can be made of other materials as well. It is used to create an air curtain to clean, dry, or cool a surface of a product without mechanical contact. Blower operated systems are advertised as being more energy efficient but that is not always the case.  In intermittent blowing and lower pressure applications, the compressed air system can be as energy efficient as blower operated systems. Therefore – they are smaller, more compact in design, easier to control, rugged, quieter, and do not have the costly maintenance compared to blowers operated units. This makes compressed air operated systems the smarter choice especially when space is a premium. The compressed air system provides significantly more force than a typical blower. Often blower operated counterparts are supplemented by compressed air or other compressed air blow off because the blower system cannot accomplish the necessary drying, cleaning, or cooling necessary for industrial application.

NOTE: Electrical currents from anti-static bars can also be injected into the air stream to neutralize static electricity charges on some surfaces.

They are a good cooling tool; thus they are used to control the thickness of liquids; such as water or can be used as a hold-down force to help in the mechanical bonding of materials to a surface. They are used in food, pharmaceutical, packaging, automotive, mining, heavy industries (steel and aluminum), printing, and circuit board manufacturing. They are also used in the first step of recycling to separate lighter particles from other components. The product is also used in post manufacturing of parts for drying, conveyor component cleaning, and to draw in waste fumes or exhaust.  They can create an invisible air barrier to separate heated or cooled environments from one another in industrial applications. For example, they are used with continuous metal heat treating ovens, cold process, storage areas in food processing, or dust containment for the entrance to clean rooms. In most cases, the air knives are stationary while the products to be cleaned or cooled are traveling on conveyors. In other manufacturing applications, the knife moves or rotates over the surface of the stationary product. Some rare circumstances, it can also be used for cutting (i.e. cutting into cake frosting during food production).

Flat Jet Nozzle (AKA. Flat Jet, Flat Nozzle)

Flat Jet Nozzle is used when a much stronger forced air is required than an air knife can provide. The flat jet nozzle can be mounted on manifolds of different lengths (holding 2, 4, or 6 units typically and more). The longer the knife, the less force of air is available. This is resolved by adding shims but there is a limit to the number of shims able to be added to the products (you can add up to four shims in one air knife). Due to the difference in chamber design, there is a greater range of shims that can be added to flat jet nozzles to produce much higher air force.

The Comparison

What factors should I consider when choosing between an air knife or a flat jet nozzle?

  • Force
  • Material
  • Required Length
  • Installation Cost
  • Noise
  • Air Consumption
  • Damage Risk

Force

By design – the longer the air knife is, the lower the force per inch. This is because of the limited size and volume of the chamber and due to the limited number of air inlet holes. By default, however, the flat jet nozzle has twice the power. You can also stack a greater number of shims on the flat jet nozzle, which can increase the force up to three times that of an air knife, which allows more power and compressed air from the flat nozzle.

Material

Nex Flow compressed air operated air knives are available in gold-color anodized aluminum, hard anodized aluminum, 304 and 316L stainless steel.  By request, the product can be made from High-density polyethylene (HDPE) and other special materials such as Polyvinylidene fluoride or polyvinylidene difluoride (PVDF).

– Hard anodized aluminum is best for most applications where abrasive materials come in contact and wears against the air knife.
– 304 Stainless steel is useful in high temperature and corrosive environments.
– 316L is best for food and pharmaceutical applications.
– HDPE and other special materials are used in environments where aluminum or stainless steel are not suitable.   

Flat jet nozzles are available in powder coated cast zinc or 316L stainless steel. Zinc is a heavy element, and when alloyed with other metals, it provides better corrosion resistance, stability, dimensional strength and impact strength. It is the third most used non ferrous metal after aluminum and copper.

– Flat jet nozzles in powder coated cast zinc are used in most manufacturing applications.
– Stainless steel is an ideal corrosion-resistant material, but it will only withstand long-term exposure if the grade is appropriate for its environment.
– 304 is an economical and practical choice for most environments, but it does not have the chloride resistance of 316.
– 316 is more expensive but worth the cost when the manufacturing environment has high chloride and salt exposure.

Stainless steel is the recommended material for shims and is used as a standard for all blow off products by Nex Flow since plastics shims will wear out quickly when using compressed air.

Required Length

Flat jet nozzles mounted on manifolds is a more flexible option since you can also use the manifolds to mount various air nozzles. They are available in 2” lengths (51 mm) and a 1” length will be available soon.

Air knives are available in 13 standard lengths and customized sizes on request:
– 2” (51mm)
– 3” (76mm)
– 6” (150 mm)
– 9” (229 mm)
– 12” (305 mm)
– 15” (382 mm)
– 18” (457mm)
– 24” (610 mm)
– 30”(761mm)
– 36”(914mm)
– 42”(1067mm)
– 48”(1219 mm)
– 54” (1372 mm)

 

FEATURED PRODUCTS

[one_third][image src=”https://www.nexflow.com/wp-content/uploads/2023/01/10003x.png” size=”” width=”” height=”” align=”center” stretch=”0″ border=”0″ margin_top=”” margin_bottom=”” link_image=”” link=”https://www.nexflow.com/products/energy-efficient-blow-off-products/air-knives/silent-x-stream-air-blade-air-knife/” target=”_blank” hover=”” alt=”” caption=”Silent X-Stream® Air Blade® Air Knife” greyscale=”” animate=””]

[button title=”View Product” link=”https://www.nexflow.com/products/energy-efficient-blow-off-products/air-knives/silent-x-stream-air-blade-air-knife/” target=”_blank” align=”center” icon=”” icon_position=”” color=”#27367a” font_color=”” size=”1″ full_width=”” class=”” download=”” rel=”” onclick=””][/one_third]

[one_third][image src=”https://www.nexflow.com/wp-content/uploads/2017/08/Flat-Jets.png” size=”” width=”” height=”” align=”center” stretch=”0″ border=”0″ margin_top=”” margin_bottom=”” link_image=”https://www.nexflow.com/wp-content/uploads/2017/08/Flat-Jets.png” link=”https://www.nexflow.com/products/energy-efficient-blow-off-products/air-nozzles/air-edger-flat-jet-nozzles/” target=”_blank” hover=”” alt=”” caption=”Air Edger® Flat Jet Air Nozzle” greyscale=”” animate=””]

[button title=”View Product” link=”https://www.nexflow.com/products/energy-efficient-blow-off-products/air-nozzles/air-edger-flat-jet-nozzles/” target=”_blank” align=”center” icon=”” icon_position=”” color=”#27367a” font_color=”” size=”1″ full_width=”” class=”” download=”” rel=”” onclick=””][/one_third]

[one_third][image src=”https://www.nexflow.com/wp-content/uploads/2017/08/Manifold-Mounted-Systems.png” size=”” width=”” height=”” align=”center” stretch=”0″ border=”0″ margin_top=”” margin_bottom=”” link_image=”https://www.nexflow.com/products/energy-efficient-blow-off-products/manifold-mounted-systems/manifold-mounted-systems/” link=”https://www.nexflow.com/products/energy-efficient-blow-off-products/manifold-mounted-systems/manifold-mounted-systems/” target=”_blank” hover=”” alt=”” caption=”Manifold Mounted System” greyscale=”” animate=””]

[button title=”View Product” link=”https://www.nexflow.com/products/energy-efficient-blow-off-products/manifold-mounted-systems/manifold-mounted-systems/” target=”_blank” align=”center” icon=”” icon_position=”” color=”#27367a” font_color=”” size=”1″ full_width=”” class=”” download=”” rel=”” onclick=””][/one_third]

 

Installation Cost

Multiple flat jet nozzles will cost more to use and install than one or a couple of air knives placed end-to-end.



Noise

Air knives are generally quieter than flat jet nozzles but could vary depending on the number of shims added. Despite having multiple shims to make the gap larger – a “good” air knife will still have lower noise levels.

Air Consumption

Air knives have a lower compressed air consumption than drilled pipe or rows of open jets and nozzles. Depending on the set gap used in the air knives, overall air consumption will be anywhere between 10% – 90% less. This is something that can easily be calculated or you can also ask us to help!

Flat Jet nozzles, or any engineered compressed air nozzles, are designed to drastically reduce compressed air consumption. The flat jet nozzle consumes more air.   They are used for large blow-offs, cooling, and parts ejection jobs, without wasting compressed air and noise in the manufacturing environment. It is also ideal for hand-held use and to mount on manifolds above conveyors in manufacturing plants.

Damage Risk

Air knives or flat jet nozzles used with compressed air will have a longer life in difficult environments than blower operated models. They have instant on-off, no electricity or explosion hazard.  Many companies that produce both products offer no anodizing on their aluminum models nor powder coating on their flat jet nozzles. Nex Flow air knives and flat jets have a longer life and does not wear down as fast as most competitive units.

Air knives are maintenance free with easily controlled compressed air output and is safe to use. However, if it is damaged, the cost of replacing the product is more than replacing multiple jet nozzles.

Weighing the importance of these factors in any given manufacturing application will lead to the optimum combination of high blowing force, low energy consumption and low noise levels for the health and safety of your working environment.

What to look for in a Flat Nozzle


Some factors to consider in the use of compressed air blow off with static elimination is the strength of the charge on the part to be addressed, if you need air blow off and exposure time to the static removal system.

Nex Flow Air Products Corp has extensive experience in the use of ionized blow off systems for the cleaning statically charged parts.

Video url : https://youtu.be/A0zCvEp6s48

Exit mobile version