Choosing The Best Spot Cooler for my Application

Choosing the best Spot Cooler

What are Spot coolers and their Importance?

Spot coolers are self-contained air conditioning systems that have all the components of larger air conditioning systems but are compact and easy to move.  Spot cooling for industrial applications are used short term to cool a small area on a part or in an enclosure – such as a cabinet. Spot coolers are ideal for cooling electronics, computer server rooms, and humans in small confined work environments. They are often praised for their portability, ease of use, and installation.

Fans cannot cool below ambient temperature because they cool by moving air and cool a wider area.  Compressed air amplifiers cool better than fans because of the higher velocity but they also do not cool below ambient temperatures. Air amplifiers also cool a wider area. This blog discusses the three most popular ways to cool below ambient temperature, namely Vortex Tubes, thermoelectric, and cryogenic gas (CO2 and Nitrogen Gas) cooling systems.

It is important that the spot cooling system chosen is reliable because sudden or frequent break downs can cause costly equipment damage, repair, or replacement.  Keeping humans cool in a small work area is important as well for health and safety concerns. All Spot coolers come with accessories that allow you to direct the cooled air where it is needed most.  Any condensation that results from the cooling process is drained through a hose or bucket.  

 

Vortex Tube Cooling System

Vortex Tube Cooling systems are powered by compressed air. The vortex action separates the compressed air into extremely cold and hot streams.  The cylindrical form causes the compressed air to rotate at a high speed (reaching 1 million rpm). A small portion of the air exits through a needle valve as hot exhaust. The remaining air is forced through the center of the incoming air stream at a slower speed. The action of the slower moving air dissipates any remaining heat into the faster moving air. The super-cooled air flows through the center of the generator and exits the cold air exhaust. Depending on the temperature and pressure of the incoming compressed air, it is possible to achieve cold end temperatures as low as – 40 and even – 50 degrees F.  The hot air (end) can be up to 260° F (127° C).  The Vortex cooling system, or cold end of the Vortex Tube, is often used for “spot cooling” of cabinets, such as control panels and industrial cameras.

Vortex Tubes normally come with the “hot end” adjustable to control the flow and temperature out the cold end.  The more flow out the hot side, the lower the temperature out the cold side.  The cooling effect (BTU/hour) is determined by both flow and temperature drop. Therefore, for cooling applications, the cold end should be between 60% – 80%.  If the cold temperature is most important, then the flow out the cold end should be under 50%.

Choosing the best Spot Cooler

Factors in selection:

Vortex Tube cooling systems that use compressed air is considered where conventional enclosure cooling by air conditioners or heat exchangers is not possible. Ideally, Vortex Tube cooling systems are used to cool small to medium size enclosures, nonmetallic enclosures, and areas where the size of cooling devices is restricted. 

For optimum cooling results when using a Vortex Tube cooling system, the following items are required when installing:

  • Clean, dry, oil-free compressed air 
  • 80 to 100 PSIG / 70 degrees F or below. Lower pressures and higher temperatures will reduce BTU/H ratings.
  • A 5-micron water and particulate removal 
  • A 5-micron oil removal filter when oil is present
  • Thermostats or temperature indicator sticker
  • Valve (optional)
  • Muffler go minimize exhaust noise

 

Advantages:

The Vortex Tube cooling system has many advantages. The small, portable, light weight, and compact system creates extremely cold air without refrigerants, included CFCs or HCFCs.  It is exceptionally reliable since there are no moving parts and virtually maintenance free. It uses minimal electricity (only for the compressor). Vortex Tube cooling systems are useful in harsh and high temperature environments. Customers can expect a long life from Vortex Tubes because Nex Flow uses only Stainless-Steel with a brass generator. Compressed air is not the only gas that can be used to produce cold air, Nitrogen and other natural gases that can be compressed can be used as well.

 

Applications:

Vortex Tube cooling systems can be used to cool:

  • electronic and electrical control instruments
  • machine operations/tooling
  • CCTV cameras
  • Set hot melt adhesives
  • soldered parts
  • gas samples
  • heat seals
  • environmental chambers
  • workers wearing protective gear
  • data centers
  • plastic machined parts and molded plastics
  • Electronic components

It is understood that cold and hot gas (bi-product) is generated when using a Vortex Tube cooling system.

Choosing the best Spot Cooler

Thermoelectric Coolers (Peltier Effect)

Thermoelectric cooling (TEC) became a viable option for spot cooling in the late 1950s with the development of semiconductor materials. The thermoelectric cooler (TEC), often called the Peltier module, is named after Jean Peltier who discovered heating/cooling effect when passing electric current through the junction of two conductors in the early 1800s. It is a semiconductor-based electronic component that functions as a small heat pump.

Using a low-voltage positive DC voltage to a TEC, electrons pass from one element (p-type) to another (n-type), and the cold-side temperature decreases as the electron current absorbs heat, until equilibrium is reached. The cooling is proportional to the current and the number of thermoelectric couples. This heat is transferred to the hot side of the cooler, where it is dissipated into the heat sink and surrounding environment. The result is a quick and large temperature differential.

 

Factors in Selection:

To use Thermoelectric spot cooling, a DC voltage required. This type of spot cooling is ideal when refrigerants are not desired, and space is limited.  It a cost effective, reliable, efficient way to spot cool. Multiple thermoelectric coolers are connected side by side and then placed between two metal plates.  It is ideal for intermittent heating and cooling applications because TEC seamlessly switches between heating and cooling.

 

Advantages:

Thermoelectric spot cooling has come to dominate certain applications because of the following benefits:

  • Precise temperature control and stabilization to 0.01 degree C
  • reliable
  • noise-free operation
  • vibration-free operation
  • scalable 
  • compact

Choosing the best Spot Cooler

Applications:

TEC is used for spot cooling for the following applications:

  • Telecommunication applications:
    • 980nm and 1480nm Pump Lasers
    • Digital Transmission Lasers
    • Planar Lightwave Circuits
    • Optical Channel Monitors
    • CATV Transmission Lasers
    • Avalanche Photodiodes
    • Wavelength Lockers
  • Medical samples
  • Cold storage
  • Electronic cabinets
  • Self-powered appliances
  • Small scale refrigeration
  • Harsh environmental protection for critical components
  • Computer microprocessors and robotics
  • Cabinet cooling

 

Cryogenic Cooling (Carbon Dioxide or Nitrogen gas)

Cryogenics is the scientific study of materials and their behaviors at temperatures well below conventional refrigeration.  The word comes from the Greek cryo “cold” and “genic”, which means “producing”. Cryogenic temperature ranges can be reported using any temperature scale, but Kelvin and Rankine scales are most commonly used because they are absolute scales that have only positive numbers.  The U.S. National Institute of Standards and Technology (NIST) considers cryogenics to include temperatures below −180 °C (93.15 K; −292.00 °F), which is a temperature above which common refrigerants (e.g., hydrogen sulfide, freon) are gases and below which “permanent gases” (e.g., air, nitrogen, oxygen, neon, hydrogen, helium) are liquids. At 250 F below zero, many gases are liquid.  Below is a list of temperatures where these gases boil. 

Fluid Boiling (Celsius) Boiling (Fahrenheit)
Oxygen -183° -297°
Nitrogen -196° -320°
Neon -246° -411°
Hydrogen -253° -423°
Helium -270° -452°

Before the fluid’s temperature rise, all the liquid must boil away and turn into a gas. None of these gases exist naturally as a liquid. Each of the gases are cooled to put them into a liquid state.

Latent heat absorption during the phase change from solid to liquid or liquid to gas causes cooling in the immediate area. According to the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE), liquid CO2 (LCO2), known as Refrigerant R-744, is the most widely used method used during vaporization of a liquid to a gas. When liquid CO2 is introduced to the system through the nozzle of a spray gun or cooling injector tube on a temperature chamber or thermal platform (cold plate), the liquid quickly turns to solid state CO2 or dry ice. As the dry ice warms up or sublimates (direct change from solid to gas), a great release of the latent heat occurs.

 

Liquid CO2:

Spot-cooling method uses liquid CO2 injected in controlled pulses through tiny capillary tubes inserted into hard-to-cool areas to the same level as the rest of plastic mold cores. This approach is meant to complement conventional water cooling by ensuring uniform mold temperature without hot spots. 

When the cooling cycle begins, LCO2 is fed under high pressure (approximately 850 psi (58.6 bar)) through the thin, flexible stainless-steel capillary tubes with solenoid valves to time injections and to the points where cooling is required. The high sublimation energy of the CO2 from solid to gas phase, along with the resulting cold gas, provides a very high local cooling capacity. The CO2 withdraws heat from the steel of the mold and escapes out of the expansion room in gaseous form through an annular gap between the hole and capillary tube. 

 

Liquid Nitrogen:

Under normal atmospheric pressure, Nitrogen can exist as a liquid between the temperatures of 63 K and 77.2 K (-346°F and -320.44°F). Below 63 K, nitrogen freezes and becomes a solid. Above 77.2 K, nitrogen boils and becomes a gas.  Since it is obtained from the atmosphere, liquid nitrogen is inexpensive and is rarely refrigerated. It is kept in insulated containers called Dewars and can boil away. 

 

Advantages:

Given the purity of LCO2 supplied for this application (typically >99.98%), there is little danger of residue build-up or contamination of the hole as there would be with water cooling.  Meanwhile, Liquid Nitrogen is colorless, odorless, and tasteless. It is an Inert element that is noncorrosive and does not support combustion, so it is safe.

 

Disadvantages:

There are several risks involved in cooling using cryogenic cooling systems. There is always a risk of asphyxiation, frostbite, or burns if not used and handled properly.  Cryogenic gas has large expansion ratio for evaporation. For example, if one liter of liquid nitrogen can result in 700 liters of gas. If released in a small room, it can fill a room and make it an oxygen deficient atmosphere. It is also not safe to digest. It is essential that all the liquid nitrogen is evaporated before ingested otherwise it can boil and cause damage to internal organs.

Choosing the best Spot Cooler

Factors in Selection:

Cryogenic spot cooling systems are ideal for specific applications in automotive, medical, aerospace, consumer products, plumbing, and construction.  CO2 is the preferred coolant for spot cooling because it is cheap to capture and compress. It is also ideal for large scale applications due to lower volume cost and longer storage times. The cooling requirements should be above -50 C. For repeated cooling, CO2 must be supplied at the right pressure and at the right temperature without gas bubbles. It stores longer than liquid nitrogen gas, which is stored at -190 C.  

Liquid Nitrogen cryogenics is colder and has greater heat removing capabilities below -60˚C. Proper supply and control system design is crucial because if too much coolant sublimates to a solid state at once, blockages in the cooling system can occur.

It is highly recommended that oxygen monitoring equipment is used to test for oxygen deficient atmospheres during cryogenic spot cooling. The system must be properly maintained to prevent blockages. 

 

Applications:

Applications of cryogenic spot cooling include:

  • Cooling of construction mold
  • Preserve experimental samples
  • Coolant for computers
  • Medicine to removed unwanted skin, warts, and pre-cancerous cells
  • Instantly freeze food and cocktails – creating an impressive cloud of vapor or fog when exposed to air. 
  • Internet searches will find recipes for nitro-caramel popcorn and pumpkin-pie ice-cream
  • Plastic and rubber deflashing and grinding
  • Metal treating
  • Biological sample preservation
  • Pulverization

 

Summary

Vortex Tube cooling system is a low-cost choice for industrial applications. Simply adjust the hot end hot air valve to determine the temperature at the cold end. The more air escaping from the hot end reduces the temperature of the cold air flowing from the other end of the Vortex Tube. 

It produces cold air instantly for enclosed environments.  Since there are no moving parts, there is no spark or explosion hazard.  Vortex Tube cooling system have two types of generators that are easily interchangeable. One generator has a cooling effect while the other one restricts the flow of the cold air, which creates extreme cold temperatures such as -40 or -50 F. Apart from special designs, the technology is available in the following configurations:

When you need require extreme cold temperatures, Nex Flow recommends using the Frigid-X® 50000C series. Nex flow vortex tub cooling system consists of a stainless-steel body with all metal parts.   The cooling system is quiet and instantly creates sub-zero cold air temperatures from an ordinary compressed air supply for spot air cooling applications where precise adjustability of temperatures is important.

Like the Vortex Tube cooling system, Thermoelectric spot cooling is an ideal choice for intermittent cooling/heating applications.  The disadvantage is that TEC requires a DC voltage because multiple thermoelectric coolers are connected side by side and then placed between two metal plates. Although equally effective for cooling to extreme temperatures as Vortex Tube or thermoelectric cooling systems for many industrial applications, cryogenic cooling appears to have the highest risks and the greatest need for monitoring equipment for health and safety concerns.

Nex Flow specializes in research and development of cooling technology required for industrial fic applications, such as spot cooling.  Nex Flow® stays ahead of the competition by finding new applications for this unique technology, and to improve the efficiency of the products which depends on many proprietary factors. Corrosion-resistant, food-grade stainless steel means that all Nex Flow equipment is dependable, and long lasting.   All spot cooling equipment is precision machined, assembled, and tested. Manufactured to withstand extreme temperatures and environmental conditions, the Vortex Tube cooling system is produced under strict quality control, which ensures years of reliable maintenance free operation.

Is Connecting Vortex Tube Output to Another Compressed Air Accessory Possible?

Vortex tubes are devices that take compressed air and spins it inside the unit creating a spinning air flow in one direction and spins the air flow back in the opposite direction within the first spinning air flow. Part of the air flow is out one end and gets hot, and the internal spinning flow that is let out the opposite end gets cold. It basically acts like tube in tube heat exchanger.

Air input the vortex tube is normally 80 to 100 PSIG (5.5 to 6.2 bar). The air exiting at each end of the vortex tube goes back to atmospheric or at least to a much lower pressure.  In considering what you can or cannot attach to vortex tube, you must first consider these realities:

  1. You need a pressure difference between the inlet air to the unit, and the exit points.  If there is no significant difference then the system will not work.
  2. The percentage of the air out the cold end is called the cold fraction. For example, if 80% of the inlet air exits the cold side the cold fraction is 80% and the hot fraction (air out the hot side) is 100-80 = 20%.  If you add anything to the cold end, there will be a back pressure. This will affect the cold fraction by pushing more air out the hot side thereby reducing the cold fraction. So there is a practical limit of how much back pressure can be tolerated by attaching anything to the cold end. The ultimate limit is a back pressure that pushes all, or almost all the air out the hot end negating any effectiveness for cooling.
  3. Similarly if you attach something to the hot end there will be back pressure pushing more air out the cold end.  The limit would be if all the air is pushed out the cold end – it negates most or all of the cooling effect.
  4. Because compressed air exit at both ends, and at a pressure close to atmospheric pressure, a vortex tube is intrinsically safe from over pressurizing, the ultimate supply pressure limited to material integrity (in the case of Nex FlowTM made products, to 250 PSIG).

So when attaching any other accessory to the vortex tube the concepts above need to be considered.  Rarely is any attachment made to the hot air exhaust end except for muffling accessories with minimal back pressure. Even in pre-packaged vortex tubes such as Tool Coolers or Panel Coolers, back pressure is very minimal and typically balanced at the cold end with other attachments such as hose hits or air distribution hose with similar back pressure effects, essentially balancing the system. However, if you examine more closely the cold end attachments, which tend to vary the most, there is a limit there as well. When attaching a hose kit such as locline or similar type of hose, the longer the length the more the back pressure.  Locline hose is used extensively with Tool Coolers. The general rule is to limit the locline to 12” and under and to make sure the opening nozzle has at least a 1/8” opening.  This keeps the back pressure low. Also, the longer you make this attachment, the air will tend to warm up more because of the conduction of atmospheric temperature through the plastic hose to the inside. So practically, the longer the hose, the higher the temperature (less cold air) exiting. In the case of a control Panel Cooler, there is a hose distribution kit supplied which is basically a long PVC hose with a muffler to attach to the end.  Instructions stipulate to create inside this long hose to have at minimum of four (4) holes of 1/8” diameter drilled into the hose to let the air out and blow the cold air from the vortex tube onto the hot parts inside the cabinet. This accelerates the cooling of the inside of a control panel.  Again, the minimum number of holes is required to minimize the back pressure (and also to help iso-thermalize the control panel faster). If the holes are not drilled, the cold air will exit only at the exit of hose end and with the added back pressure will restrict the flow, hence negatively affect the overall cooling rate (slows the process of equalizing the cabinet temperature). The hose addition onto a Panel Cooler also acts as a backup in case of a very remote possibility of any moisture getting into the panel in the very rare case that the filter on the inlet air fails. There are instances where a vortex tube has a hose attached to the cold end to deliver cold air at a long distance for other applications.  It is important to simply use a larger inside diameter hose, the longer the length to minimize back pressure and if possible insulate the hose from conducting heat into the hose, warming up the cold air travelling inside. Care should be taken that the cold end hose is not fully plugged because while the back pressure will force air back out the hot side, any weakness in the hose may also cause it to split and may be dangerous as a result.

The question frequently arise is if it is possible to attach a vortex tube cold air output to the inlet to a blow-off accessory like air knife or an air amplifier (or any other air amplifying or conveying device).   The answer is – it cannot be done simply because of the back pressure requirement of the vortex tube (#3 above). Any air amplifying device requires the air inlet to have high pressure.  For a vortex tube to work, the air exit pressure from the vortex tube must be low.  So attaching a vortex tube to the air amplifying product will just not work.

But…. the possibility of an alternative approach does come up.  There have been a few attempted applications, where the air exiting the cold end of a vortex tube is placed near the air entraining end of an air amplifier such as an air jet or small air amplifier like an FX10, or FX20 or even an FX40.    Successful results are rare however, and not confirmed, due to how air amplification technology works. The air drawn in by an air amplifier is depends on the amplifier size. For example, an FX10 will amplify air flow about 6.5 times and consumes 4.9 SCFM at 80 PSG.  That means it will draw in a volume of 27 SCFM. (6.5-1 = 5.5 multiplied by 4.9). So if you place a vortex tube cold end “close” to the air entraining end the amplified air can be cooled. Even then, much of that cold air will already be mixed with warmer atmospheric air reducing the cold temperature.  And, at the outlet of the amplifier about another 3 times the air is entrained from the warmer atmosphere. Assuming basic adiabatic mixing the cooling effect of the vortex tube supplied air will be greatly reduced. With a larger amplifier, the overwhelming effect of the high volume of entraining atmospheric air overwhelms cooling effect of the small volume of cold air from the vortex tube. This is why mixing the two technologies rarely works.

Air amplifiers and even air knives themselves do cool however, and are used extensively (especially air amplifiers) to cool very hot materials such as castings using the wind chill effect.  It’s like driving with the window down in your car while driving on a hot day. The high velocity of the amplified air will accelerate the cooling of the hot surface because the high flow and high velocity of the amplified air cuts through the heat boundary layer on the part to remove the heat fast.  One example was from an application in Mexico where small, hot aluminum parts which normally cooled in 30 minutes from sitting on a table were cooled in under a minute using a flow amplifier alone.

Vortex tubes are designed to cool enclosures or for spot cooling and not for cooling large areas.  In those applications you are best off using air amplifiers. Therefore, combining vortex tubes with air amplifiers however is not a proven method. When using vortex tubes – it is important to understand the above 4 facts governing the operation of the technology.

How do mufflers work and how often should you change them

How do mufflers work and how often should you change your muffler

Compressed air exhaust can be quite noisy. Nex Flow’s air amplification technology is used to reduce the noise in all sorts of blow off, cooling and drying applications by converting the energy wasted as noise and pressure drop into useful flow and force.

But there are other applications where sound reduction is important as well.

Reclassifying Mufflers

Ports on cylinders, valves and other air operated equipment for exhaust noise exhaust air and this exhausting air can be noisy. Normally mufflers are added to these ports to reduce the exhaust noise.  Different units exist to reduce this noise – sintered bronze or sintered plastic mufflers are common. These mufflers should have minimal back pressure so it does not negatively affect the operation of the cylinder, valve or part. They are sized to be able to pass through a certain amount of exhaust air. The sintered mesh design attenuates the exhaust air noise to reduce the noise level as the air leaves the unit. A visual check can determine if the muffler needs replacement but usually a replacement schedule is set up depending on the history of the plant operation.

 

Reclassifying mufflers offer greater noise reduction than sintered bronze or sintered plastic units (up to 35 dBA noise reduction). They are also designed to eliminate the oil mist that is often in compressed air used by cylinders and valves for lubrication. The exhaust air leaving cylinders and valves can pollute the working environment with oil mist that can adversely impact the health of the factory personnel. In the USA, OSHA Standard 29 CFR 1910.10 states that a factory employee’s cumulative exposure to oil mist must not exceed 4.32 PPM (parts per million) in any given eight hour shift in a 40 hour week.  Similar standards limiting oil mist exposure exists in other countries.

The reclassifying muffler supplied by Nex Flow Air Products Corp. is a patented wrap design for the removable filter element that separates and removes the oil from the exhausted air existing the cylinder, valve or other machine part so that no oil is released into the factory environment. For example, if the exhaust air contains 50 PPM of oil mist at 100 psig, the reclassifying muffler will reduce the oil mist entering the plant atmosphere to 0.015 PPM. The reclassifying muffler incorporates a reservoir to collect the removed oil which can be drained by attaching a ¼” drain line. Then the recovered oil can be properly disposed of. Replacement filter elements should be changed on a scheduled maintenance program depending on plant history.

As with other types of mufflers describe earlier, the reclassifying muffler is designed to pass a certain volume of exhaust air with minimal back pressure to avoid interfering with the operation of the cylinder, valve or machine part.  When used on cylinders, refer to this chart for easy selection based on the bore and stroke of a cylinder.

Noise is also generated when using venturi systems like the Ring Vac. Here the muffling has to be accomplished using vacuum hose attached at “each end” of the unit. Any muffling device used in line will cause too much back pressure and make the use of the product ineffective. However, the hose itself can be quite effective in reducing the noise generated by the action of the product.

One compressed air technology that can be quite noisy used alone is the vortex tube. When using vortex tubes, the air must be properly filtered to avoid oil and dirt building up inside the unit so some effective means of oil mist removal is required in their muffling.

 

A vortex tube takes compressed air and literally splits it into a hot and a cold stream. The hot stream is normally exhausted at one end (the hot end exhaust) into the atmosphere, and the cold stream is used for spot cooling. The exhaust air creates noise at both the hot end and the cold end, but the majority of the noise is at the cold end. Vortex tubes are sold separately and in packaged versions for a variety of applications – for tool cooling, for camera cooling and for cabinet cooling as major applications. In the packaged versions they typically utilize a sintered muffler at the hot end to reduce the noise from the hot end exhaust, similar to the sintered mufflers commonly used for cylinders and valves. The cold end typically uses a specially made muffler with sound absorbing material inside to absorb the noise generated by the exhausted cold air. This cold air does not go through this sound absorbing material (like the hot air does in the sintered material). Instead, the sound absorbing material is wrapped around the inside wall of a cylindrical piece attached to the cold end of the vortex tube. This is because the back pressure would be too great and would negatively affect the cold temperature if the sintered model is used for muffling. A proper cold end muffler also has a metal piece to hold the sound proofing material in place (the metallic piece normally has large holes or gaps to keep sound proofing materials effective). Most companies use plastic as the sound muting material, however Nex Flow uses special natural sound proofing material that is also fire resistant and is biodegradable. Although slightly more expensive – this makes our Hot and Cold End Muffler better at sound proofing and is far more environmentally friendly than plastic units.


When vortex tubes are purchased separately, a hot end muffler is available to be purchased separately (a sintered type) and the cold end muffler used in the packaged versions can also be purchased separately.

If the compressed air if properly filtered in advance, these hot and cold end mufflers should not need replacement.  But it is wise to check annually for dirt or oil buildup on the mufflers or anywhere on the vortex tube unit to assess if replacement or cleaning is necessary and then check the filter system and repair or improve as necessary.

To reduce noise further either a flexible hose or plane plastic tubing can be used to convey the air to the point of use or to be distributed for cooling control panels.

Exhaust compressed air can be noisy, so it can either addressed by exhaust “design” as is done with air amplifying products or with mufflers of the type mentioned herein depending on the product.

Are the Materials of a Vortex Cooler Important? They Sure Are!

Vortex Tube operated cabinet enclosure coolers such as the Nex Flow Frigix-X Panel Coolers operate utilizing compressed air wherein one end gets hot, and the other end gets cold. They find applications in particularly dirty environments and hot and wet factory climates.

Because of the rough environments they are subjected to, construction materials are pretty necessary. Some manufacturers utilize stainless steel with the vortex tube (cold temperature generating portion) and then packaged it in an aluminum housing and assembly, usually not anodized. So after a short time, the appearance of the aluminum, especially if not anodized in such environments, look pretty deteriorated.

But it is mainly in hot and humid environments where the combination of stainless steel with aluminum can be a problem due to the possible effect of galvanic corrosion between these two very dissimilar metals. Due to this corrosion effect, I have personally seen a vortex-style cabinet enclosure cooler with a big gaping hole in its aluminum housing.

So if choosing vortex tube operated cabinet enclosure coolers, it is a good idea to check what they are made off. Nex Flow makes them from stainless steel. The vortex tube, housing, and attachments are stainless to avoid this corrosion issue. Stainless steel will obviously hold up much better than aluminum in a nasty factory environment.

Nex Flow manufacturers specialized compressed air products for blowoff, cooling, and moving c/w quality accessories for controlling, monitoring, and filtering compressed air.

Does a Vortex Tube Work with Liquids?

This question comes up occasionally and surprisingly the answer is yes, but not like how you may think. One explanation put forward is that this happens because normally a liquid used has a vapor pressure. You reduce the hydrostatic pressure below this vapor pressure in the center of the vortex tube causing the fluid to flash and form a vapor bubble along the central axis in the vortex. However, this bubble will collapse as it exists the cold end. If there is any temperature difference at all, it may be hardly measurable.

Tests that actually have been done show that a temperature difference can be created using liquid instead of gas but, it will heat up, not cool.

R.T. Balmer did experiments with water as a working fluid in a vortex tube [R. T. Balmer, ASME J. Fluid Eng.110, 161 (1988)]. The water inlet water temperature was about 20 degrees C, and the hot end got as high as 50 C, while the cold side achieved a temperature of 25 C (Still heated up!).

So using a vortex tube with liquids for heating may have some potential as yet to be identified…… maybe!

 

FEATURED PRODUCTS

[one][one_third][image src=”https://www.nexflow.com/wp-content/uploads/2017/08/Vortex-Tubes-Side-by-Side.png” size=”” width=”” height=”” align=”center” stretch=”0″ border=”0″ margin_top=”” margin_bottom=”” link_image=”” link=”https://www.nexflow.com/products/vortex-tube-industrial-cooling/vortex-tubes/vortex-tubes/” target=”_blank” hover=”” alt=”” caption=”Vortex Tube” greyscale=”” animate=””]

[button title=”View Product” link=”https://www.nexflow.com/products/vortex-tube-industrial-cooling/vortex-tubes/vortex-tubes/” target=”_blank” align=”center” icon=”” icon_position=”” color=”#27367a” font_color=”” size=”1″ full_width=”” class=”” download=”” rel=”” onclick=””][/one_third][/one]

Nex Flow Air Products Corp. manufactures vortex tubes using compressed air and have done special designs using other gases for special applications. They are one of few companies today that continue to do extensive research into vortex tubes. Nex Flow welcomes inquiries into possible new applications.

Exit mobile version